Authors
- Yunkee Chae
- Woosung Choi
- Yuhta Takida
- Junghyun Koo*
- Yukara Ikemiya
- Zhi Zhong*
- Kin Wai Cheuk
- Marco A. Martínez-Ramírez
- Kyogu Lee*
- Wei-Hsiang Liao
- Yuki Mitsufuji
* External authors
Venue
- NeurIPS-24
Date
- 2025
VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression
Yunkee Chae
Woosung Choi
Yukara Ikemiya
Zhi Zhong*
Kin Wai Cheuk
Marco A. Martínez-Ramírez
Kyogu Lee*
* External authors
NeurIPS-24
2025
Abstract
Recent state-of-the-art neural audio compression models have progressively adopted residual vector quantization (RVQ). Despite this success, these models employ a fixed number of codebooks per frame, which can be suboptimal in terms of rate-distortion tradeoff, particularly in scenarios with simple input audio, such as silence. To address this limitation, we propose variable bitrate RVQ (VRVQ) for audio codecs, which allows for more efficient coding by adapting the number of codebooks used per frame. Furthermore, we propose a gradient estimation method for the non-differentiable masking operation that transforms from the importance map to the binary importance mask, improving model training via a straight-through estimator. We demonstrate that the proposed training framework achieves superior results compared to the baseline method and shows further improvement when applied to the current state-of-the-art codec.
Related Publications
Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…
This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



