Authors

* External authors

Venue

Date

Share

SilentCipher: Deep Audio Watermarking

Mayank Kumar Singh*

Naoya Takahashi

Yuki Mitsufuji

Wei-Hsiang Liao

* External authors

INTERSPEECH 2024

2024

Abstract

In the realm of audio watermarking, it is challenging to simultaneously encode imperceptible messages while enhancing the message capacity and robustness. Although recent advancements in deep learning-based methods bolster the message capacity and robustness over traditional methods, the encoded messages introduce audible artefacts that restricts their usage in professional settings. In this study, we introduce three key innovations. Firstly, our work is the first deep learning-based model to integrate psychoacoustic model based thresholding to achieve imperceptible watermarks. Secondly, we introduce psuedo-differentiable compression layers, enhancing the robustness of our watermarking algorithm. Lastly, we introduce a method to eliminate the need for perceptual losses, enabling us to achieve SOTA in both robustness as well as imperceptible watermarking. Our contributions lead us to SilentCipher, a model enabling users to encode messages within audio signals sampled at 44.1kHz.

Related Publications

On the Language Encoder of Contrastive Cross-modal Models

ACL, 2024
Mengjie Zhao*, Junya Ono*, Zhi Zhong*, Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Takashi Shibuya, Hiromi Wakaki*, Yuki Mitsufuji, Wei-Hsiang Liao

Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder, which is the central component of encoding natural language descri…

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

ACL, 2024
Silin Gao*, Mete Ismayilzada*, Mengjie Zhao*, Hiromi Wakaki*, Yuki Mitsufuji, Antoine Bosselut*

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections bet…

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

ISMIR, 2024
Marco Comunità*, Zhi Zhong*, Akira Takahashi, Shiqi Yang*, Mengjie Zhao*, Koichi Saito, Yukara Ikemiya, Takashi Shibuya, Shusuke Takahashi*, Yuki Mitsufuji

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.