Authors
- Sungho Lee*
- Marco A. Martínez-Ramírez
- Wei-Hsiang Liao
- Stefan Uhlich*
- Giorgio Fabbro*
- Kyogu Lee*
- Yuki Mitsufuji
* External authors
Venue
- DAFx-24
Date
- 2024
SEARCHING FOR MUSIC MIXING GRAPHS: A PRUNING APPROACH
Sungho Lee*
Marco A. Martínez-Ramírez
Stefan Uhlich*
Giorgio Fabbro*
Kyogu Lee*
* External authors
DAFx-24
2024
Abstract
Music mixing is compositional -- experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to dry-mix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
Related Publications
Handling distribution shifts from training data, known as out-of-distribution (OOD) generalization, poses a significant challenge in the field of machine learning. While a pre-trained vision-language model like CLIP has demonstrated remarkable zero-shot performance, further …
Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder, which is the central component of encoding natural language descri…
Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections bet…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.