Authors
- Sungho Lee*
- Marco A. Martínez-Ramírez
- Wei-Hsiang Liao
- Stefan Uhlich*
- Giorgio Fabbro*
- Kyogu Lee*
- Yuki Mitsufuji
* External authors
Venue
- DAFx-24
Date
- 2024
SEARCHING FOR MUSIC MIXING GRAPHS: A PRUNING APPROACH
Sungho Lee*
Marco A. Martínez-Ramírez
Stefan Uhlich*
Giorgio Fabbro*
Kyogu Lee*
* External authors
DAFx-24
2024
Abstract
Music mixing is compositional -- experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to dry-mix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
Related Publications
Machine learning models are advancing circuit design, particularly in analog circuits. They typically generate netlists that lack human interpretability. This is a problem as human designers heavily rely on the interpretability of circuit diagrams or schematics to intuitivel…
In the recent development of conditional diffusion models still require heavy supervised fine-tuning for performing control on a category of tasks. Training-free conditioning via guidance with off-the-shelf models is a favorable alternative to avoid further fine-tuning on th…
Parameter-Efficient Fine-Tuning (PEFT) of text-to-image models has become an increasingly popular technique with many applications. Among the various PEFT methods, Low-Rank Adaptation (LoRA) and its variants have gained significant attention due to their effectiveness, enabl…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.