Authors

* External authors

Venue

Date

Share

On the Language Encoder of Contrastive Cross-modal Models

Mengjie Zhao*

Junya Ono*

Zhi Zhong*

Chieh-Hsin Lai

Yuhta Takida

Naoki Murata

Takashi Shibuya

Hiromi Wakaki*

Yuki Mitsufuji

Wei-Hsiang Liao

* External authors

ACL-24

2024

Abstract

Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder, which is the central component of encoding natural language descriptions of image/audio into vector representations. We extensively evaluate how unsupervised and supervised sentence embedding training affect language encoder quality and cross-modal task performance. In VL pretraining, we found that sentence embedding training language encoder quality and aids in cross-modal tasks, improving contrastive VL models such as CyCLIP. In contrast, AL pretraining benefits less from sentence embedding training, which may result from the limited amount of pretraining data. We analyze the representation spaces to understand the strengths of sentence embedding training, and find that it improves text-space uniformity, at the cost of decreased cross-modal alignment.

Related Publications

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

ACL, 2024
Silin Gao*, Mete Ismayilzada*, Mengjie Zhao*, Hiromi Wakaki*, Yuki Mitsufuji, Antoine Bosselut*

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections bet…

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

ISMIR, 2024
Marco Comunità*, Zhi Zhong*, Akira Takahashi, Shiqi Yang*, Mengjie Zhao*, Koichi Saito, Yukara Ikemiya, Takashi Shibuya, Shusuke Takahashi*, Yuki Mitsufuji

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high…

Towards Assessing Data Replication in Music Generation with Music Similarity Metrics on Raw Audio

ISMIR, 2024
Roser Batlle-Roca*, Wei-Hsiang Liao, Xavier Serra, Yuki Mitsufuji, Emilia Gómez*

Recent advancements in music generation are raising multiple concerns about the implications of AI in creative music processes, current business models and impacts related to intellectual property management. A relevant challenge is the potential replication and plagiarism o…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.