Authors

* External authors

Venue

Date

Share

Fx-Encoder++: Extracting Instrument-Wise Audio Effects Representations from Mixtures

Yen-Tung Yeh

Junghyun Koo*

Marco A. Martínez-Ramírez

Wei-Hsiang Liao

Yi-Hsuan Yang

Yuki Mitsufuji

* External authors

ISMIR-25

2025

Abstract

General-purpose audio representations have proven effective across diverse music information retrieval applications, yet their utility in intelligent music production remains limited by insufficient understanding of audio effects (Fx). Although previous approaches have emphasized audio effects analysis at the mixture level, this focus falls short for tasks demanding instrument-wise audio effects understanding, such as automatic mixing. In this work, we present Fx-Encoder++, a novel model designed to extract instrument-wise audio effects representations from music mixtures. Our approach leverages a contrastive learning framework and introduces an "extractor" mechanism that, when provided with instrument queries (audio or text), transforms mixture-level audio effects embeddings into instrument-wise audio effects embeddings. We evaluated our model across retrieval and audio effects parameter matching tasks, testing its performance across a diverse range of instruments. The results demonstrate that Fx-Encoder++ outperforms previous approaches at mixture level and show a novel ability to extract effects representation instrument-wise, addressing a critical capability gap in intelligent music production systems.

Related Publications

Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models

ICLR, 2026
Kevin Rojas, Ye He, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji, Molei Tao

Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …

3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation

ICLR, 2026
Joungbin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim*

We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…

LLM2Fx-Tools: Tool Calling For Music Post-Production

ICLR, 2026
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Woosung Choi, Wei-Hsiang Liao, Qiyu Wu, Juhan Nam, Yuki Mitsufuji

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…

  • HOME
  • Publications
  • Fx-Encoder++: Extracting Instrument-Wise Audio Effects Representations from Mixtures

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.