Authors
Venue
- ICLR-25
Date
- 2025
Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric
Taiji Suzuki
ICLR-25
2025
Abstract
In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in the real world. For richer classes of the similarity, we propose the use of weighted point clouds, namely, sets of pairs of weight and vector, as representations of instances. In this work, we theoretically show the benefit of our proposed method through a new understanding of the contrastive loss of CLIP, which we call symmetric InfoNCE. We clarify that the optimal similarity that minimizes symmetric InfoNCE is the pointwise mutual information, and show an upper bound of excess risk on downstream classification tasks of representations that achieve the optimal similarity. In addition, we show that our proposed similarity based on weighted point clouds consistently achieves the optimal similarity. To verify the effectiveness of our proposed method, we demonstrate pretraining of text-image representation models and classification tasks on common benchmarks.
Related Publications
In music production, manipulating audio effects (Fx) parameters through natural language has the potential to reduce technical barriers for non-experts. We present LLM2Fx, a framework leveraging Large Language Models (LLMs) to predict Fx parameters directly from textual desc…
This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…
General-purpose audio representations have proven effective across diverse music information retrieval applications, yet their utility in intelligent music production remains limited by insufficient understanding of audio effects (Fx). Although previous approaches have empha…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.