Venue

Date

Share

Value Function Decomposition for Iterative Design of Reinforcement Learning Agents

James MacGlashan

Evan Archer

Alisa Devlic

Takuma Seno

Craig Sherstan

Peter R. Wurman

Peter Stone

NeurIPS 2022

2022

Abstract

Designing reinforcement learning (RL) agents is typically a difficult process that requires numerous design iterations. Learning can fail for a multitude of reasons and standard RL methods provide too few tools to provide insight into the exact cause. In this paper, we show how to integrate \textit{value decomposition} into a broad class of actor-critic algorithms and use it to assist in the iterative agent-design process. Value decomposition separates a reward function into distinct components and learns value estimates for each. These value estimates provide insight into an agent's learning and decision-making process and enable new training methods to mitigate common problems. As a demonstration, we introduce SAC-D, a variant of soft actor-critic (SAC) adapted for value decomposition. SAC-D maintains similar performance to SAC, while learning a larger set of value predictions. We also introduce decomposition-based tools that exploit this information, including a new reward \textit{influence} metric, which measures each reward component's effect on agent decision-making. Using these tools, we provide several demonstrations of decomposition's use in identifying and addressing problems in the design of both environments and agents. Value decomposition is broadly applicable and easy to incorporate into existing algorithms and workflows, making it a powerful tool in an RL practitioner's toolbox.

Related Publications

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Peter Stone, Peter Wurman

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

Wait That Feels Familiar: Learning to Extrapolate Human Preferences for Preference-Aligned Path Planning.

ICRA, 2024
Haresh Karnan*, Elvin Yang*, Garrett Warnell*, Joydeep Biswas*, Peter Stone

Autonomous mobility tasks such as lastmile delivery require reasoning about operator indicated preferences over terrains on which the robot should navigate to ensure both robot safety and mission success. However, coping with out of distribution data from novel terrains or a…

Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

COACM, 2024
Eric Horvitz*, Vincent Conitzer*, Sheila McIlraith*, Peter Stone

Advances in artificial intelligence (AI) will transform many aspects of our lives and society, bringing immense opportunities but also posing significant risks and challenges. The next several decades may well be a turning point for humanity, comparable to the industrial rev…

  • HOME
  • Publications
  • Value Function Decomposition for Iterative Design of Reinforcement Learning Agents

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.