Authors

* External authors

Venue

Date

Share

Unsupervised vocal dereverberation with diffusion-based generative models

Koichi Saito

Naoki Murata

Toshimitsu Uesaka

Chieh-Hsin Lai

Yuhta Takida

Takao Fukui*

Yuki Mitsufuji

* External authors

ICASSP 2023

2023

Abstract

Removing reverb from reverberant music is a necessary technique to clean up audio for downstream music manipulations. Reverberation of music contains two categories, natural reverb, and artificial reverb. Artificial reverb has a wider diversity than natural reverb due to its various parameter setups and reverberation types. However, recent supervised dereverberation methods may fail because they rely on sufficiently diverse and numerous pairs of reverberant observations and retrieved data for training in order to be generalizable to unseen observations during inference. To resolve these problems, we propose an unsupervised method that can remove a general kind of artificial reverb for music without requiring pairs of data for training. The proposed method is based on diffusion models, where it initializes the unknown reverberation operator with a conventional signal processing technique and simultaneously refines the estimate with the help of diffusion models. We show through objective and perceptual evaluations that our method outperforms the current leading vocal dereverberation benchmarks.

Related Publications

On the Language Encoder of Contrastive Cross-modal Models

ACL, 2024
Mengjie Zhao*, Junya Ono*, Zhi Zhong*, Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Takashi Shibuya, Hiromi Wakaki*, Yuki Mitsufuji, Wei-Hsiang Liao

Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder, which is the central component of encoding natural language descri…

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

ACL, 2024
Silin Gao*, Mete Ismayilzada*, Mengjie Zhao*, Hiromi Wakaki*, Yuki Mitsufuji, Antoine Bosselut*

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections bet…

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

ISMIR, 2024
Marco Comunità*, Zhi Zhong*, Akira Takahashi, Shiqi Yang*, Mengjie Zhao*, Koichi Saito, Yukara Ikemiya, Takashi Shibuya, Shusuke Takahashi*, Yuki Mitsufuji

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high…

  • HOME
  • Publications
  • Unsupervised vocal dereverberation with diffusion-based generative models

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.