Authors

* External authors

Venue

Date

Share

The Whole Is Greater than the Sum of Its Parts: Improving DNN-based Music Source Separation

Ryosuke Sawata*

Naoya Takahashi

Stefan Uhlich*

Shusuke Takahashi*

Yuki Mitsufuji

* External authors

IEEE Transactions on Audio, Speech, and Language Processing (TASLP)

2023

Abstract

This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) without increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation, which couples the individual instrument networks, and (iii) combination loss (CL). MDL enables the taking advantage of the frequency- and time-domain representations of audio signals. We modify the target network, i.e., the network architecture of the original DNN-based MSS, by adding bridging paths for each output instrument to share their information. MDL is then applied to the combinations of the output sources as well as each independent source, hence we called it CL. MDL and CL can easily be applied to many DNN-based separation methods as they are merely loss functions that are only used during training and do not affect the inference step. Bridging operation does not increase the number of learnable parameters in the network. Experimental results showed that the validity of Open-Unmix (UMX) and densely connected dilated DenseNet (D3Net) extended with our X-scheme, respectively called X-UMX and X-D3Net, by comparing them with their original versions. We also verified the effectiveness of X-scheme in a large-scale data regime, showing its generality with respect to data size. X-UMX Large (X-UMXL), which was trained on large-scale internal data and used in our experiments, is newly available at this https URL (https://github.com/asteroid-team/asteroid/tree/master/egs/musdb18/X-UMX).

Related Publications

SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning

ECCV, 2024
Bac Nguyen, Stefan Uhlich*, Fabien Cardinaux*, Lukas Mauch*, Marzieh Edraki*, Aaron Courville*

Handling distribution shifts from training data, known as out-of-distribution (OOD) generalization, poses a significant challenge in the field of machine learning. While a pre-trained vision-language model like CLIP has demonstrated remarkable zero-shot performance, further …

On the Language Encoder of Contrastive Cross-modal Models

ACL, 2024
Mengjie Zhao*, Junya Ono*, Zhi Zhong*, Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Takashi Shibuya, Hiromi Wakaki*, Yuki Mitsufuji, Wei-Hsiang Liao

Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder, which is the central component of encoding natural language descri…

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

ACL, 2024
Silin Gao*, Mete Ismayilzada*, Mengjie Zhao*, Hiromi Wakaki*, Yuki Mitsufuji, Antoine Bosselut*

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections bet…

  • HOME
  • Publications
  • The Whole Is Greater than the Sum of Its Parts: Improving DNN-based Music Source Separation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.