Authors

* External authors

Venue

Date

Share

Temporal-Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks

Yuqian Jiang*

Sudarshanan Bharadwaj*

Bo Wu*

Rishi Shah*

Ufuk Topcu*

Peter Stone

* External authors

AAAI-2021

2021

Abstract

In continuing tasks, average-reward reinforcement learning may be a more appropriate problem formulation than the more common discounted reward formulation. As usual, learning an optimal policy in this setting typically requires a large amount of training experiences. Reward shaping is a common approach for incorporating domain knowledge into reinforcement learning in order to speed up convergence to an optimal policy. However, to the best of our knowledge, the theoretical properties of reward shaping have thus far only been established in the discounted setting. This paper presents the first reward shaping framework for average-reward learning and proves that, under standard assumptions, the optimal policy under the original reward function can be recovered. In order to avoid the need for manual construction of the shaping function, we introduce a method for utilizing domain knowledge expressed as a temporal logic formula. The formula is automatically translated to a shaping function that provides additional reward throughout the learning process. We evaluate the proposed method on three continuing tasks. In all cases, shaping speeds up the average-reward learning rate without any reduction in the performance of the learned policy compared to relevant baselines.

Related Publications

Metric Residual Networks for Sample Efficient Goal-Conditioned Reinforcement Learning

AAAI, 2023
Bo Liu*, Yihao Feng*, Qiang Liu*, Peter Stone

Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the …

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

AAAI, 2023
Serena Booth*, W. Bradley Knox*, Julie Shah*, Scott Niekum*, Peter Stone, Alessandro Allievi*

In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in pr…

DM2: Distributed Multi-Agent Reinforcement Learning via Distribution Matching

AAAI, 2023
Caroline Wang*, Ishan Durugkar*, Elad Liebman*, Peter Stone

Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communic…

  • HOME
  • Publications
  • Temporal-Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.