Authors

* External authors

Venue

Date

Share

Symbolic State Space Optimization for Long Horizon Mobile Manipulation Planning

Xiaohan Zhang*

Yifeng Zhu*

Yan Ding*

Yuqian Jiang*

Yuke Zhu*

Peter Stone

Shiqi Zhang*

* External authors

IROS 2023

2023

Abstract

In existing task and motion planning (TAMP) research, it is a common assumption that experts manually specify the state space for task-level planning. A well-developed state space enables the desirable distribution of limited computational resources between task planning and motion planning. However, developing such task-level state spaces can be non-trivial in practice. In this paper, we consider a long horizon mobile manipulation domain including repeated navigation and manipulation. We propose Symbolic State Space Optimization (S3O) for computing a set of abstracted locations and their 2D geometric groundings for generating task-motion plans in such domains. Our approach has been extensively evaluated in simulation and demonstrated on a real mobile manipulator working on clearing up dining tables. Results show the superiority of the proposed method over TAMP baselines in task completion rate and execution time.

Related Publications

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

Wait That Feels Familiar: Learning to Extrapolate Human Preferences for Preference-Aligned Path Planning.

ICRA, 2024
Haresh Karnan*, Elvin Yang*, Garrett Warnell*, Joydeep Biswas*, Peter Stone

Autonomous mobility tasks such as lastmile delivery require reasoning about operator indicated preferences over terrains on which the robot should navigate to ensure both robot safety and mission success. However, coping with out of distribution data from novel terrains or a…

Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

COACM, 2024
Eric Horvitz*, Vincent Conitzer*, Sheila McIlraith*, Peter Stone

Advances in artificial intelligence (AI) will transform many aspects of our lives and society, bringing immense opportunities but also posing significant risks and challenges. The next several decades may well be a turning point for humanity, comparable to the industrial rev…

  • HOME
  • Publications
  • Symbolic State Space Optimization for Long Horizon Mobile Manipulation Planning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.