Authors

* External authors

Venue

Date

Share

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

Marco Comunità*

Zhi Zhong*

Akira Takahashi

Shiqi Yang*

Mengjie Zhao*

Koichi Saito

Yukara Ikemiya

Takashi Shibuya

Shusuke Takahashi*

Yuki Mitsufuji

* External authors

ISMIR 2024

2024

Abstract

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods. As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios.

Related Publications

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

NeurIPS, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Blind Inverse Problem Solving Made Easy by Text-to-Image Latent Diffusion

NeurIPS, 2025
Michail Dontas, Yutong He, Naoki Murata, Yuki Mitsufuji, J. Zico Kolter*, Ruslan Salakhutdinov*

Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…

  • HOME
  • Publications
  • SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.