Authors

* External authors

Venue

Date

Share

Reinforcement Learning for Optimization of COVID-19 Mitigation Policies

Varun Kompella

Roberto Capobianco

Stacy Jong*

Jonathan Browne*

Spencer Fox*

Lauren Meyers*

Pete Wurman

Peter Stone

* External authors

AAAI Fall Symposium on AI for Social Good

2020

Abstract

The year 2020 has seen the COVID-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world are faced with the challenge of protecting public health, while keeping the economy running to the greatest extent possible. Epidemiological models provide insight into the spread of these types of diseases and predict the effects of possible intervention policies. However, to date, the even the most data-driven intervention policies rely on heuristics. In this paper, we study how reinforcement learning (RL) can be used to optimize mitigation policies that minimize the economic impact without overwhelming the hospital capacity. Our main contributions are (1) a novel agent-based pandemic simulator which, unlike traditional models, is able to model fine-grained interactions among people at specific locations in a community; and (2) an RL-based methodology for optimizing fine-grained mitigation policies within this simulator. Our results validate both the overall simulator behavior and the learned policies under realistic conditions.

Related Publications

Benchmarking Reinforcement Learning Techniques for Autonomous Navigation

ICRA, 2023
Zifan Xu*, Bo Liu*, Xuesu Xiao*, Anirudh Nair*, Peter Stone

Deep reinforcement learning (RL) has broughtmany successes for autonomous robot navigation. However,there still exists important limitations that prevent real-worlduse of RL-based navigation systems. For example, most learningapproaches lack safety guarantees; and learned na…

Learning Perceptual Hallucination for Multi-Robot Navigation in Narrow Hallways

ICRA, 2023
Jin-Soo Park*, Xuesu Xiao*, Garrett Warnell*, Harel Yedidsion*, Peter Stone

While current systems for autonomous robot navigation can produce safe and efficient motion plans in static environments, they usually generate suboptimal behaviors when multiple robots must navigate together in confined spaces. For example, when two robots meet each other i…

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Neural Networks, 2023
Megan M. Baker*, Alexander New*, Mario Aguilar-Simon*, Ziad Al-Halah*, Sébastien M. R. Arnold*, Ese Ben-Iwhiwhu*, Andrew P. Brna*, Ethan Brooks*, Ryan C. Brown*, Zachary Daniels*, Anurag Daram*, Fabien Delattre*, Ryan Dellana*, Eric Eaton*, Haotian Fu*, Kristen Grauman*, Jesse Hostetler*, Shariq Iqbal*, Cassandra Kent*, Nicholas Ketz*, Soheil Kolouri*, George Konidaris*, Dhireesha Kudithipudi*, Seungwon Lee*, Michael L. Littman*, Sandeep Madireddy*, Jorge A. Mendez*, Eric Q. Nguyen*, Christine D. Piatko*, Praveen K. Pilly*, Aswin Raghavan*, Abrar Rahman*, Santhosh Kumar Ramakrishnan*, Neale Ratzlaff*, Andrea Soltoggio*, Peter Stone, Indranil Sur*, Zhipeng Tang*, Saket Tiwari*, Kyle Vedder*, Felix Wang*, Zifan Xu*, Angel Yanguas-Gil*, Harel Yedidsion*, Shangqun Yu*, Gautam K. Vallabha*

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…

  • HOME
  • Publications
  • Reinforcement Learning for Optimization of COVID-19 Mitigation Policies

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.