Authors

* External authors

Venue

Date

Share

Reinforcement Learning for Optimization of COVID-19 Mitigation Policies

Varun Kompella

Roberto Capobianco

Stacy Jong*

Jonathan Browne*

Spencer Fox*

Lauren Meyers*

Pete Wurman

Peter Stone

* External authors

AAAI Fall Symposium on AI for Social Good

2020

Abstract

The year 2020 has seen the COVID-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world are faced with the challenge of protecting public health, while keeping the economy running to the greatest extent possible. Epidemiological models provide insight into the spread of these types of diseases and predict the effects of possible intervention policies. However, to date, the even the most data-driven intervention policies rely on heuristics. In this paper, we study how reinforcement learning (RL) can be used to optimize mitigation policies that minimize the economic impact without overwhelming the hospital capacity. Our main contributions are (1) a novel agent-based pandemic simulator which, unlike traditional models, is able to model fine-grained interactions among people at specific locations in a community; and (2) an RL-based methodology for optimizing fine-grained mitigation policies within this simulator. Our results validate both the overall simulator behavior and the learned policies under realistic conditions.

Related Publications

VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

CMMR, 2023
Juan M. Huerta*, Bo Liu*, Peter Stone

Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the…

LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning

NeurIPS, 2023
Bo Liu*, Yifeng Zhu*, Chongkai Gao*, Yihao Feng*, Qiang Liu*, Yuke Zhu*, Peter Stone

Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and conce…

FAMO: Fast Adaptive Multitask Optimization

NeurIPS, 2023
Bo Liu*, Yihao Feng*, Peter Stone, Qiang Liu*

One of the grand enduring goals of AI is to create generalist agents that can learn multiple different tasks from diverse data via multitask learning (MTL). However, gradient descent (GD) on the average loss across all tasks may yield poor multitask performance due to severe…

  • HOME
  • Publications
  • Reinforcement Learning for Optimization of COVID-19 Mitigation Policies

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.