Authors
- Keya Ghonasgi*
- Reuth Mirsky*
- Adrian M Haith*
- Peter Stone
- Ashish D Deshpande*
* External authors
Venue
- IROS
Date
- 2022
Quantifying Changes in Kinematic Behavior of a Human-Exoskeleton Interactive System
Keya Ghonasgi*
Reuth Mirsky*
Adrian M Haith*
Ashish D Deshpande*
* External authors
IROS
2022
Abstract
While human-robot interaction studies are becoming more common, quantification of the effects of repeated interaction with an exoskeleton remains unexplored. We draw upon existing literature in human skill assessment and present extrinsic and intrinsic performance metrics that quantify how the human-exoskeleton system’s behavior changes over time. Specifically, in this paper, we present a new performance metric that provides insight into the system’s kinematics associated with ‘successful’ movements resulting in a richer characterization of changes in the system’s behavior. A human subject study is carried out wherein participants learn to play a challenging and dynamic reaching game over multiple attempts, while donning an upper-body exoskeleton. The results demonstrate that repeated practice results in learning over time as identified through the improvement of extrinsic performance. Changes in the newly developed kinematics-based measure further illuminate how the participant’s intrinsic behavior is altered over the training period. Thus, we are able to quantify the changes in the human-exoskeleton system’s behavior observed in relation with learning.
Related Publications
The purpose of continual reinforcement learning is to train an agent on a sequence of tasks such that it learns the ones that appear later in the sequence while retaining theability to perform the tasks that appeared earlier. Experience replay is a popular method used to mak…
When designing reinforcement learning (RL) agents, a designer communicates the desired agent behavior through the definition of reward functions - numerical feedback given to the agent as reward or punishment for its actions. However, mapping desired behaviors to reward func…
Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



