Venue
- AAMAS-2021
Date
- 2021
Multiagent Epidemiologic Inference through Realtime Contact Tracing
Guni Sharon*
James Ault*
* External authors
AAMAS-2021
2021
Abstract
This paper addresses an epidemiologic inference problem where, given realtime observation of test results, presence of symptoms,
and physical contacts, the most likely infected individuals need to be inferred. The inference problem is modeled as a hidden Markov
model where infection probabilities are updated at every time step and evolve between time steps. We suggest a unique inference
approach that avoids storing the given observations explicitly. Theoretical justification for the proposed model is provided under specific simplifying assumptions. To complement these theoretical results, a comprehensive experimental study is performed using a custom-built agent-based simulator that models inter-agent contacts. The reported results show the effectiveness of the proposed
inference model when considering more realistic scenarios – where the simplifying assumptions do not hold. When pairing the proposed inference model with a simple testing and quarantine policy, promising trends are obtained where the epidemic progression is significantly slowed down while quarantining a bounded number of individuals.
Related Publications
Deep reinforcement learning (RL) has broughtmany successes for autonomous robot navigation. However,there still exists important limitations that prevent real-worlduse of RL-based navigation systems. For example, most learningapproaches lack safety guarantees; and learned na…
While current systems for autonomous robot navigation can produce safe and efficient motion plans in static environments, they usually generate suboptimal behaviors when multiple robots must navigate together in confined spaces. For example, when two robots meet each other i…
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.