Authors
- Jingtao Li
- Lingjuan Lyu
- Daisuke Iso
- Chaitali Chakrabarti*
- Michael Spranger
* External authors
Venue
- ICLR 2023
Date
- 2023
MocoSFL: enabling cross-client collaborative self-supervised learning
Jingtao Li
Chaitali Chakrabarti*
* External authors
ICLR 2023
2023
Abstract
Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Federated Learning (SFL) and Momentum Contrast (MoCo). In MocoSFL, the large backbone model is split into a small client-side model and a large server-side model, and only the small client-side model is processed locally on the client's local devices. MocoSFL has three key components: (i) vector concatenation which enables the use of small batch size and reduces computation and memory requirements by orders of magnitude; (ii) feature sharing that helps achieve high accuracy regardless of the quality and volume of local data; (iii) frequent synchronization that helps achieve better non-IID performance because of smaller local model divergence. For a 1,000-client case with non-IID data (each client only has data from 2 random classes of CIFAR-10), MocoSFL can achieve over 84% accuracy with ResNet-18 model. Next we present TAResSFL module that significantly improves the resistance to privacy threats and communication overhead with small sacrifice in accuracy for a MocoSFL system. On a Raspberry Pi 4B device, the MocoSFL-based scheme requires less than 1MB of memory and less than 40MB of communication, and consumes less than 5W power. Thus, compared to the state-of-the-art FL-based approach, MocoSFL has significant advantages in both accuracy and practicality for cross-client applications.
Related Publications
The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…
With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.