* External authors




Metric Residual Networks for Sample Efficient Goal-Conditioned Reinforcement Learning

Bo Liu*

Yihao Feng*

Qiang Liu*

Peter Stone

* External authors

AAAI 2023



Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the agent is only rewarded when it reaches its goal. While several methods have been proposed to improve the sample efficiency of GCRL, one relatively under-studied approach is the design of neural architectures to support sample efficiency. In this work, we introduce a novel neural architecture for GCRL that achieves significantly better sample efficiency than the commonly-used monolithic network architecture. The key insight is that the optimal action-value function Q^*(s, a, g) must satisfy the triangle inequality in a specific sense. Furthermore, we introduce the metric residual network (MRN) that deliberately decomposes the action-value function Q(s,a,g) into the negated summation of a metric plus a residual asymmetric component. MRN provably approximates any optimal action-value function Q^*(s,a,g), thus making it a fitting neural architecture for GCRL. We conduct comprehensive experiments across 12 standard benchmark environments in GCRL. The empirical results demonstrate that MRN uniformly outperforms other state-of-the-art GCRL neural architectures in terms of sample efficiency.

Related Publications

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Neural Networks, 2023
Megan M. Baker*, Alexander New*, Mario Aguilar-Simon*, Ziad Al-Halah*, Sébastien M. R. Arnold*, Ese Ben-Iwhiwhu*, Andrew P. Brna*, Ethan Brooks*, Ryan C. Brown*, Zachary Daniels*, Anurag Daram*, Fabien Delattre*, Ryan Dellana*, Eric Eaton*, Haotian Fu*, Kristen Grauman*, Jesse Hostetler*, Shariq Iqbal*, Cassandra Kent*, Nicholas Ketz*, Soheil Kolouri*, George Konidaris*, Dhireesha Kudithipudi*, Seungwon Lee*, Michael L. Littman*, Sandeep Madireddy*, Jorge A. Mendez*, Eric Q. Nguyen*, Christine D. Piatko*, Praveen K. Pilly*, Aswin Raghavan*, Abrar Rahman*, Santhosh Kumar Ramakrishnan*, Neale Ratzlaff*, Andrea Soltoggio*, Peter Stone, Indranil Sur*, Zhipeng Tang*, Saket Tiwari*, Kyle Vedder*, Felix Wang*, Zifan Xu*, Angel Yanguas-Gil*, Harel Yedidsion*, Shangqun Yu*, Gautam K. Vallabha*

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…

Reward (Mis)design for autonomous driving

Artificial Intelligence, 2023
W. Bradley Knox*, Alessandro Allievi*, Holger Banzhaf*, Felix Schmitt*, Peter Stone

This article considers the problem of diagnosing certain common errors in reward design. Its insights are also applicable to the design of cost functions and performance metrics more generally. To diagnose common errors, we develop 8 simple sanity checks for identifying flaw…

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

AAAI, 2023
Serena Booth*, W. Bradley Knox*, Julie Shah*, Scott Niekum*, Peter Stone, Alessandro Allievi*

In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in pr…

  • HOME
  • Publications
  • Metric Residual Networks for Sample Efficient Goal-Conditioned Reinforcement Learning


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.