Authors

* External authors

Venue

Date

Share

Extending Audio Masked Autoencoders Toward Audio Restoration

Zhi Zhong*

Hao Shi*

Masato Hirano*

Kazuki Shimada

Kazuya Tateishi*

Takashi Shibuya

Shusuke Takahashi*

Yuki Mitsufuji

* External authors

WASPAA 2023

2023

Abstract

Audio classification and restoration are among major downstream tasks in audio signal processing. However, restoration derives less of a benefit from pretrained models compared to the overwhelming success of pretrained models in classification tasks. Due to such unbalanced benefits, there has been rising interest in how to improve the performance of pretrained models for restoration tasks, e.g., speech enhancement (SE). Previous works have shown that the features extracted by pretrained audio encoders are effective for SE tasks, but these speech-specialized encoder-only models usually require extra decoders to become compatible with SE, and involve complicated pretraining procedures or complex data augmentation. Therefore, in pursuit of a universal audio model, the audio masked autoencoder (MAE) whose backbone is the autoencoder of Vision Transformers (ViT-AE), is extended from audio classification to SE, a representative restoration task with well-established evaluation standards. ViT-AE learns to restore masked audio signal via a mel-to-mel mapping during pretraining, which is similar to restoration tasks like SE. We propose variations of ViT-AE for a better SE performance, where the mel-to-mel variations yield high scores in non-intrusive metrics and the STFT-oriented variation is effective at intrusive metrics such as PESQ. Different variations can be used in accordance with the scenarios. Comprehensive evaluations reveal that MAE pretraining is beneficial to SE tasks and help the ViT-AE to better generalize to out-of-domain distortions. We further found that large-scale noisy data of general audio sources, rather than clean speech, is sufficiently effective for pretraining.

Related Publications

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

NeurIPS, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Blind Inverse Problem Solving Made Easy by Text-to-Image Latent Diffusion

NeurIPS, 2025
Michail Dontas, Yutong He, Naoki Murata, Yuki Mitsufuji, J. Zico Kolter*, Ruslan Salakhutdinov*

Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…

  • HOME
  • Publications
  • Extending Audio Masked Autoencoders Toward Audio Restoration

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.