Authors
- R. Oguz Araz
- Guillem Cortès-Sebastià
- Emilio Molina
- Joan Serrà
- Xavier Serra
- Yuki Mitsufuji
- Dmitry Bogdanov
Venue
- ISMIR-25
Date
- 2025
Enhancing neural audio fingerprint robustness to audio degradation for music identification
R. Oguz Araz
Guillem Cortès-Sebastià
Emilio Molina
Xavier Serra
Dmitry Bogdanov
ISMIR-25
2025
Abstract
Audio fingerprinting (AFP) allows the identification of unknown audio content by extracting compact representations, termed audio fingerprints, that are designed to remain robust against common audio degradations. Neural AFP methods often employ metric learning, where representation quality is influenced by the nature of the supervision and the utilized loss function. However, recent work unrealistically simulates real-life audio degradation during training, resulting in sub-optimal supervision. Additionally, although several modern metric learning approaches have been proposed, current neural AFP methods continue to rely on the NT-Xent loss without exploring the recent advances or classical alternatives. In this work, we propose a series of best practices to enhance the self-supervision by leveraging musical signal properties and realistic room acoustics. We then present the first systematic evaluation of various metric learning approaches in the context of AFP, demonstrating that a self-supervised adaptation of the triplet loss yields superior performance. Our results also reveal that training with multiple positive samples per anchor has critically different effects across loss functions. Our approach is built upon these insights and achieves state-of-the-art performance on both a large, synthetically degraded dataset and a real-world dataset recorded using microphones in diverse music venues.
Related Publications
Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…
This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



