Dynamic Sparse Training for Deep Reinforcement Learning

Ghada Sokar

Elena Mocanu

Decebal Constantin Mocanu

Mykola Pechenizkiy

Peter Stone

IJCAI 2022



Deep reinforcement learning (DRL) agents are trained through trial-and-error interactions with the environment. This leads to a long training time for dense neural networks to achieve good performance. Hence, prohibitive computation and memory resources are consumed. Recently, learning efficient DRL agents has received increasing attention. Yet, current methods focus on accelerating inference time. In this paper, we introduce for the first time a dynamic sparse training approach for deep reinforcement learning to accelerate the training process. The proposed approach trains a sparse neural network from scratch and dynamically adapts its topology to the changing data distribution during training. Experiments on continuous control tasks show that our dynamic sparse agents achieve higher performance than the equivalent dense methods, reduce the parameter count and floating-point operations (FLOPs) by 50%, and have a faster learning speed that enables reaching the performance of dense agents with 40-50% reduction in the training steps.

Related Publications

Metric Residual Networks for Sample Efficient Goal-Conditioned Reinforcement Learning

AAAI, 2023
Bo Liu*, Yihao Feng*, Qiang Liu*, Peter Stone

Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the …

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

AAAI, 2023
Serena Booth*, W. Bradley Knox*, Julie Shah*, Scott Niekum*, Peter Stone, Alessandro Allievi*

In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in pr…

DM2: Distributed Multi-Agent Reinforcement Learning via Distribution Matching

AAAI, 2023
Caroline Wang*, Ishan Durugkar*, Elad Liebman*, Peter Stone

Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communic…


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.