Authors

* External authors

Venue

Date

Share

DM2: Distributed Multi-Agent Reinforcement Learning via Distribution Matching

Caroline Wang*

Ishan Durugkar

Elad Liebman*

Peter Stone

* External authors

AAAI 2023

2023

Abstract

Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communication. It examines the use of distribution matching to facilitate the coordination of independent agents. In the proposed scheme, each agent independently minimizes the distribution mismatch to the corresponding component of a target visitation distribution. The theoretical analysis shows that under certain conditions, each agent minimizing its individual distribution mismatch allows the convergence to the joint policy that generated the target distribution. Further, if the target distribution is from a joint policy that optimizes a cooperative task, the optimal policy for a combination of this task reward and the distribution matching reward is the same joint policy. This insight is used to formulate a practical algorithm (DM2), in which each individual agent matches a target distribution derived from concurrently sampled trajectories from a joint expert policy. Experimental validation on the StarCraft domain shows that combining (1) a task reward, and (2) a distribution matching reward for expert demonstrations for the same task, allows agents to outperform a naive distributed baseline. Additional experiments probe the conditions under which expert demonstrations need to be sampled to obtain the learning benefits.

Related Publications

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Peter Stone, Peter Wurman

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

Wait That Feels Familiar: Learning to Extrapolate Human Preferences for Preference-Aligned Path Planning.

ICRA, 2024
Haresh Karnan*, Elvin Yang*, Garrett Warnell*, Joydeep Biswas*, Peter Stone

Autonomous mobility tasks such as lastmile delivery require reasoning about operator indicated preferences over terrains on which the robot should navigate to ensure both robot safety and mission success. However, coping with out of distribution data from novel terrains or a…

Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

COACM, 2024
Eric Horvitz*, Vincent Conitzer*, Sheila McIlraith*, Peter Stone

Advances in artificial intelligence (AI) will transform many aspects of our lives and society, bringing immense opportunities but also posing significant risks and challenges. The next several decades may well be a turning point for humanity, comparable to the industrial rev…

  • HOME
  • Publications
  • DM2: Distributed Multi-Agent Reinforcement Learning via Distribution Matching

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.