Authors

Venue

Date

Share

Discogs-VINet-MIREX

Xavier Serra

Yuki Mitsufuji

R.O. Araz

J. Serrà

D. Bogdanov

MIREX 2024

2025

Abstract

This technical report presents our submission to the cover song identification task for the 2024 edition of the Music Information Retrieval Evaluation eXchange (MIREX). For this submission, we enhanced our Discogs-VINet model by changing the definition of an epoch, incorporating automatic mixed precision (AMP) during both training and inference, and sampling four versions per clique during triplet mining (which became possible with AMP). Due to this enhanced model’s performance on the Discogs-VI test set, we trained a new model from scratch using the entire Discogs-VI dataset, rather than just the training partition used in Discogs-VINet (a 45% increase in the number of versions). This enhanced and retrained model is named Discogs-VINet-MIREX.

Related Publications

Can Large Language Models Predict Audio Effects Parameters from Natural Language?

WASPAA, 2025
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Juhan Nam, Yuki Mitsufuji

In music production, manipulating audio effects (Fx) parameters through natural language has the potential to reduce technical barriers for non-experts. We present LLM2Fx, a framework leveraging Large Language Models (LLMs) to predict Fx parameters directly from textual desc…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

ICML, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Fx-Encoder++: Extracting Instrument-Wise Audio Effects Representations from Mixtures

ISMIR, 2025
Yen-Tung Yeh, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Yi-Hsuan Yang, Yuki Mitsufuji

General-purpose audio representations have proven effective across diverse music information retrieval applications, yet their utility in intelligent music production remains limited by insufficient understanding of audio effects (Fx). Although previous approaches have empha…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.