Discogs-VINet-MIREX
Xavier Serra
R.O. Araz
J. Serrà
D. Bogdanov
MIREX 2024
2025
Abstract
This technical report presents our submission to the cover song identification task for the 2024 edition of the Music Information Retrieval Evaluation eXchange (MIREX). For this submission, we enhanced our Discogs-VINet model by changing the definition of an epoch, incorporating automatic mixed precision (AMP) during both training and inference, and sampling four versions per clique during triplet mining (which became possible with AMP). Due to this enhanced model’s performance on the Discogs-VI test set, we trained a new model from scratch using the entire Discogs-VI dataset, rather than just the training partition used in Discogs-VINet (a 45% increase in the number of versions). This enhanced and retrained model is named Discogs-VINet-MIREX.
Related Publications
Parameter-Efficient Fine-Tuning (PEFT) of text-to-image models has become an increasingly popular technique with many applications. Among the various PEFT methods, Low-Rank Adaptation (LoRA) and its variants have gained significant attention due to their effectiveness, enabl…
We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with var…
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.