Authors

* External authors

Venue

Date

Share

DeepDFA: Automata Learning through Neural Probabilistic Relaxations

Elena Umili*

Roberto Capobianco

* External authors

ECAI-24

2025

Abstract

In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers interpretability post-training, alongside reduced complexity and enhanced training efficiency compared to traditional RNNs. Moreover, by leveraging gradient-based optimization, our method surpasses combinatorial approaches in both scalability and noise resilience. Validation experiments conducted on target regular languages of varying size and complexity demonstrate that our approach is accurate, fast, and robust to noise in both the input symbols and the output labels of training data, integrating the strengths of both logical grammar induction and deep learning.

Related Publications

XAI-Guided Continual Learning: Rationale, Methods, and Future Directions

WIREs, 2025
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Providing neural networks with the ability to learn new tasks sequentially represents one of the main challenges in artificial intelligence. Unlike humans, neural networks are prone to losing previously acquired knowledge upon learning new information, a phenomenon known as …

Interpretable Memory-based Prototypical Pooling

WSDM, 2025
Alessio Ragno*, Roberto Capobianco

Graph Neural Networks (GNNs) have proven their effectiveness in various graph-structured data applications. However, one of the significant challenges in the realm of GNNs is representation learning, a critical concept that bridges graph pooling, aimed at creating compressed…

Intermediate Layers of LLMs Align Best With the Brain by Balancing Short- and Long-Range Information

CCN, 2025
Michela Proietti*, Roberto Capobianco, Mariya Toneva

Contextual integration is fundamental to human language comprehension. Language models are a powerful tool for studying how contextual information influences brain activity. In this work, we analyze the brain alignment of three types of language models, which vary in how the…

  • HOME
  • Publications
  • DeepDFA: Automata Learning through Neural Probabilistic Relaxations

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.