Authors

* External authors

Venue

Date

Share

D-Shape: Demonstration-Shaped Reinforcement Learning via Goal Conditioning.

Caroline Wang*

Garrett Warnell*

Peter Stone

* External authors

AAMAS

2023

Abstract

While combining imitation learning (IL) and reinforcement learning (RL) is a promising way to address poor sample efficiency in autonomous behavior acquisition, methods that do so typically assume that the requisite behavior demonstrations are provided by an expert that behaves optimally with respect to a task reward. If, however, suboptimal demonstrations are provided, a fundamental challenge appears in that the demonstration-matching objective of IL conflicts with the return-maximization objective of RL. This paper introduces D-Shape, a new method for combining IL and RL that uses ideas from reward shaping and goal-conditioned RL to resolve the above conflict. D-Shape allows learning from suboptimal demonstrations while retaining the ability to find the optimal policy with respect to the task reward. We experimentally validate D-Shape in sparse-reward gridworld domains, showing that it both improves over RL in terms of sample efficiency and converges consistently to the optimal policy in the presence of suboptimal demonstrations.

Related Publications

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

RLC, 2025
Michela Proietti*, Peter R. Wurman, Peter Stone, Roberto Capobianco

The purpose of continual reinforcement learning is to train an agent on a sequence of tasks such that it learns the ones that appear later in the sequence while retaining theability to perform the tasks that appeared earlier. Experience replay is a popular method used to mak…

Automated Reward Design for Gran Turismo

NeurIPS, 2025
Michel Ma, Takuma Seno, Kaushik Subramanian, Peter R. Wurman, Peter Stone, Craig Sherstan

When designing reinforcement learning (RL) agents, a designer communicates the desired agent behavior through the definition of reward functions - numerical feedback given to the agent as reward or punishment for its actions. However, mapping desired behaviors to reward func…

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

  • HOME
  • Publications
  • D-Shape: Demonstration-Shaped Reinforcement Learning via Goal Conditioning.

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.