Authors

* External authors

Venue

Date

Share

CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos

Hao-Wen Dong*

Naoya Takahashi

Yuki Mitsufuji

Julian McAuley*

Taylor Berg-Kirkpatrick*

* External authors

ICLR 2023

2023

Abstract

Recent years have seen progress beyond domain-specific sound separation for speech or music towards universal sound separation for arbitrary sounds. Prior work on universal sound separation has investigated separating a target sound out of an audio mixture given a text query. Such text-queried sound separation systems provide a natural and scalable interface for specifying arbitrary target sounds. However, supervised text-queried sound separation systems require costly labeled audio-text pairs for training. Moreover, the audio provided in existing datasets is often recorded in a controlled environment, causing a considerable generalization gap to noisy audio in the wild. In this work, we aim to approach text-queried universal sound separation by using only unlabeled data. We propose to leverage the visual modality as a bridge to learn the desired audio-textual correspondence. The proposed CLIPSep model first encodes the input query into a query vector using the contrastive language-image pretraining (CLIP) model, and the query vector is then used to condition an audio separation model to separate out the target sound. While the model is trained on image-audio pairs extracted from unlabeled videos, at test time we can instead query the model with text inputs in a zero-shot setting, thanks to the joint language-image embedding learned by the CLIP model. Further, videos in the wild often contain off-screen sounds and background noise that may hinder the model from learning the desired audio-textual correspondence. To address this problem, we further propose an approach called noise invariant training for training a query-based sound separation model on noisy data. Experimental results show that the proposed models successfully learn text-queried universal sound separation using only noisy unlabeled videos, even achieving competitive performance against a supervised model in some settings.

Related Publications

On the Language Encoder of Contrastive Cross-modal Models

ACL, 2024
Mengjie Zhao*, Junya Ono*, Zhi Zhong*, Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Takashi Shibuya, Hiromi Wakaki*, Yuki Mitsufuji, Wei-Hsiang Liao

Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder, which is the central component of encoding natural language descri…

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

ACL, 2024
Silin Gao*, Mete Ismayilzada*, Mengjie Zhao*, Hiromi Wakaki*, Yuki Mitsufuji, Antoine Bosselut*

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections bet…

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

ISMIR, 2024
Marco Comunità*, Zhi Zhong*, Akira Takahashi, Shiqi Yang*, Mengjie Zhao*, Koichi Saito, Yukara Ikemiya, Takashi Shibuya, Shusuke Takahashi*, Yuki Mitsufuji

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high…

  • HOME
  • Publications
  • CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.