Authors

* External authors

Venue

Date

Share

Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space

Yangming Li

Chieh-Hsin Lai

Carola-Bibiane Schönlieb

Yuki Mitsufuji

Stefano Ermon*

* External authors

ICLR-25

2025

Abstract

Deep Generative Models (DGMs), including Energy-Based Models (EBMs) and Score-based Generative Models (SGMs), have advanced high-fidelity data generation and complex continuous distribution approximation. However, their application in Markov Decision Processes (MDPs), particularly in distributional Reinforcement Learning (RL), remains underexplored, with conventional histogram-based methods dominating the field. This paper rigorously highlights that this application gap is caused by the nonlinearity of modern DGMs, which conflicts with the linearity required by the Bellman equation in MDPs. For instance, EBMs involve nonlinear operations such as exponentiating energy functions and normalizing constants. To address this, we introduce Bellman Diffusion, a novel DGM framework that maintains linearity in MDPs through gradient and scalar field modeling. With divergence-based training techniques to optimize neural network proxies and a new type of stochastic differential equation (SDE) for sampling, Bellman Diffusion is guaranteed to converge to the target distribution. Our empirical results show that Bellman Diffusion achieves accurate field estimations and is a capable image generator, converging 1.5x faster than the traditional histogram-based baseline in distributional RL tasks. This work enables the effective integration of DGMs into MDP applications, unlocking new avenues for advanced decision-making frameworks.

Related Publications

Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models

ICLR, 2026
Kevin Rojas, Ye He, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji, Molei Tao

Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …

3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation

ICLR, 2026
Joungbin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim*

We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…

LLM2Fx-Tools: Tool Calling For Music Post-Production

ICLR, 2026
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Woosung Choi, Wei-Hsiang Liao, Qiyu Wu, Juhan Nam, Yuki Mitsufuji

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…

  • HOME
  • Publications
  • Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.