Venue
- IJCAI-2020
Date
- 2021
Balancing Individual Preferences and Shared Objectives in Multiagent Reinforcement Learning
Ishan Durugkar*
Elad Liebman*
* External authors
IJCAI-2020
2021
Abstract
In multiagent reinforcement learning scenarios, it is often the case that independent agents must jointly learn to perform a cooperative task. This paper focuses on such a scenario in which agents have individual preferences regarding how to accomplish the shared task. We consider a framework for this setting which balances individual preferences against task rewards using a linear mixing scheme. In our theoretical analysis we establish that agents can reach an equilibrium that leads to optimal shared task reward even when they consider individual preferences which are not fully aligned with this task. We then empirically show, somewhat counter-intuitively, that there exist mixing schemes that outperform a purely task-oriented baseline. We further consider empirically how to optimize the mixing scheme.
Related Publications
Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the …
In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in pr…
Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communic…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.