Authors

Venue

Date

Share

Automated Reward Design for Gran Turismo

Michel Ma

Takuma Seno

Kaushik Subramanian

Peter R. Wurman

Peter Stone

Craig Sherstan

NeurIPS-25

2025

Abstract

When designing reinforcement learning (RL) agents, a designer communicates the desired agent behavior through the definition of reward functions - numerical feedback given to the agent as reward or punishment for its actions. However, mapping desired behaviors to reward functions can be a difficult process, especially in complex environments such as autonomous racing. In this paper, we demonstrate how current foundation models can effectively search over a space of reward functions to produce desirable RL agents for the Gran Turismo 7 racing game, given only text-based instructions. Through a combination of LLM-based reward generation, VLM preference-based evaluation, and human feedback we demonstrate how our system can be used to produce racing agents competitive with GT Sophy, a champion-level RL racing agent, as well as generate novel behaviors, paving the way for practical automated reward design in real world applications.

Related Publications

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

RLC, 2025
Michela Proietti*, Peter R. Wurman, Peter Stone, Roberto Capobianco

The purpose of continual reinforcement learning is to train an agent on a sequence of tasks such that it learns the ones that appear later in the sequence while retaining theability to perform the tasks that appeared earlier. Experience replay is a popular method used to mak…

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

Hyperspherical Normalization for Scalable Deep Reinforcement Learning

ICML, 2025
Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, Jaegul Choo

Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.