Authors

* External authors

Venue

Date

Share

A Penny for Your Thoughts: The Value of Communication in Ad Hoc Teamwork

Reuth Mirsky*

William Macke*

Andy Wang*

Harel Yedidsion*

Peter Stone

* External authors

IJCAI-2020

2021

Abstract

In ad hoc teamwork, multiple agents need to collaborate without having knowledge about their teammates or their plans a priori. A common assumption in this research area is that the agents cannot communicate. However, just as two random people may speak the same language, autonomous teammates may also happen to share a communication protocol. This paper considers how such a shared protocol can be leveraged, introducing a means to reason about Communication in Ad Hoc Teamwork (CAT). The goal of this work is enabling improved ad hoc teamwork by judiciously leveraging the ability of the team to communicate. We situate our study within a novel CAT scenario, involving tasks with multiple steps, where teammates' plans are unveiled over time. In this context, the paper proposes methods to reason about the timing and value of communication and introduces an algorithm for an ad hoc agent to leverage these methods. Finally, we introduces a new multiagent domain, the tool fetching domain, and we study how varying this domain's properties affects the usefulness of communication. Empirical results show the benefits of explicit reasoning about communication content and timing in ad hoc teamwork.

Related Publications

VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

CMMR, 2023
Juan M. Huerta*, Bo Liu*, Peter Stone

Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the…

LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning

NeurIPS, 2023
Bo Liu*, Yifeng Zhu*, Chongkai Gao*, Yihao Feng*, Qiang Liu*, Yuke Zhu*, Peter Stone

Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and conce…

FAMO: Fast Adaptive Multitask Optimization

NeurIPS, 2023
Bo Liu*, Yihao Feng*, Peter Stone, Qiang Liu*

One of the grand enduring goals of AI is to create generalist agents that can learn multiple different tasks from diverse data via multitask learning (MTL). However, gradient descent (GD) on the average loss across all tasks may yield poor multitask performance due to severe…

  • HOME
  • Publications
  • A Penny for Your Thoughts: The Value of Communication in Ad Hoc Teamwork

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.