Authors

* External authors

Venue

Date

Share

Understanding Deep RL agent decisions: a novel interpretable approach with trainable prototypes

Caterina Borzillo*

Alessio Ragno*

Roberto Capobianco

* External authors

XAI.it 2023 @ AIXIA

2023

Abstract

Deep reinforcement learning (DRL) models have shown great promise in various applications, but their practical adoption in critical domains is limited due to their opaque decision-making processes. To address this challenge, explainable AI (XAI) techniques aim to enhance transparency and interpretability of black-box models. However, most current interpretable systems focus on supervised learning problems, leaving reinforcement learning relatively unexplored. This paper extends the work of PW-Net, an interpretable wrapper model for DRL agents inspired by image classification methodologies. We introduce Shared-PW-Net, an interpretable deep learning model that features a fully trainable prototype layer. Unlike PW-Net, Shared-PW-Net does not rely on pre-existing prototypes. Instead, it leverages the concept of ProtoPool to automatically learn general prototypes assigned to actions during training. Additionally, we propose a novel prototype initialization method that significantly improves the model’s performance. Through extensive experimentation, we demonstrate that our Shared-PW-Net achieves the same reward performance as existing methods without requiring human intervention. Our model’s fully trainable prototype layer, coupled with the innovative prototype initialization approach, contributes to a clearer and more interpretable decision-making process. The code for this work is publicly available for further exploration and applications.

Related Publications

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

ACC, 2024
Catherine Weaver*, Roberto Capobianco, Peter R. Wurman, Peter Stone, Masayoshi Tomizuka*

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

Memory Replay For Continual Learning With Spiking Neural Networks

IEEE MSLP, 2023
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …

  • HOME
  • Publications
  • Understanding Deep RL agent decisions: a novel interpretable approach with trainable prototypes

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.