Venue
- NeurIPS 2023
Date
- 2023
Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning
Yue Tan
Chen Chen
Xin Dong
Guodong Long*
* External authors
NeurIPS 2023
2023
Abstract
Federated learning (FL) is an effective machine learning paradigm where multiple clients can train models based on heterogeneous data in a decentralized manner without accessing their private data. However, existing FL systems undergo performance deterioration due to feature-level test-time shifts, which are well investigated in centralized settings but rarely studied in FL. The common non-IID issue in FL usually refers to inter-client heterogeneity during training phase, while the test-time shift refers to the intra-client heterogeneity during test phase. Although the former is always deemed to be notorious for FL, there is still a wealth of useful information delivered by heterogeneous data sources, which may potentially help alleviate the latter issue. To explore the possibility of using inter-client heterogeneity in handling intra-client heterogeneity, we firstly propose a contrastive learning-based FL framework, namely FedICON, to capture invariant knowledge among heterogeneous clients and consistently tune the model to adapt to test data. In FedICON, each client performs sample-wise supervised contrastive learning during the local training phase, which enhances sample-wise invariance encoding ability. Through global aggregation, the invariance extraction ability can be mutually boosted among inter-client heterogeneity. During the test phase, our test-time adaptation procedure leverages unsupervised contrastive learning to guide the model to smoothly generalize to test data under intra-client heterogeneity. Extensive experiments validate the effectiveness of the proposed FedICON in taming heterogeneity to handle test-time shift problems.
Related Publications
In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…
In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…
Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.