Authors

* External authors

Venue

Date

Share

FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation

Chieh-Hsin Lai

Yuhta Takida

Naoki Murata

Toshimitsu Uesaka

Yuki Mitsufuji

Stefano Ermon*

* External authors

ICML 2023

2023

Abstract

Score-based generative models learn a family of noise-conditional score functions corresponding to the data density perturbed with increasingly large amounts of noise. These perturbed data densities are tied together by the Fokker-Planck equation (FPE), a partial differential equation (PDE) governing the spatial-temporal evolution of a density undergoing a diffusion process. In this work, we derive a corresponding equation, called the score FPE that characterizes the noise-conditional scores of the perturbed data densities (i.e., their gradients). Surprisingly, despite impressive empirical performance, we observe that scores learned via denoising score matching (DSM) do not satisfy the underlying score FPE. We prove that satisfying the FPE is desirable as it improves the likelihood and the degree of conservativity. Hence, we propose to regularize the DSM objective to enforce satisfaction of the score FPE, and we show the effectiveness of this approach across various datasets.

Related Publications

PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher

NeurIPS, 2024
Dongjun Kim*, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, Stefano Ermon*

To accelerate sampling, diffusion models (DMs) are often distilled into generators that directly map noise to data in a single step. In this approach, the resolution of the generator is fundamentally limited by that of the teacher DM. To overcome this limitation, we propose …

GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping

NeurIPS, 2024
Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin Lai, Seungryong Kim*, Yuki Mitsufuji

Generating novel views from a single image remains a challenging task due to the complexity of 3D scenes and the limited diversity in the existing multi-view datasets to train a model on. Recent research combining large-scale text-to-image (T2I) models with monocular depth e…

The whole is greater than the sum of its parts: improving music source separation by bridging networks

EURASIP, 2024
Ryosuke Sawata, Naoya Takahashi, Stefan Uhlich*, Shusuke Takahashi*, Yuki Mitsufuji

This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with almost no increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation…

  • HOME
  • Publications
  • FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.