Authors

* External authors

Venue

Date

Share

Delving into the Adversarial Robustness of Federated Learning

Zijie Zhang*

Bo Li*

Chen Chen

Lingjuan Lyu

Shuang Wu*

Shouhong Ding*

Chao Wu*

* External authors

AAAI 2023

2023

Abstract

In Federated Learning (FL), models are as fragile as centrally trained models against adversarial examples. However, the adversarial robustness of federated learning remains largely unexplored. This paper casts light on the challenge of adversarial robustness of federated learning. To facilitate a better understanding of the adversarial vulnerability of the existing FL methods, we conduct comprehensive robustness evaluations on various attacks and adversarial training methods. Moreover, we reveal the negative impacts induced by directly adopting adversarial training in FL, which seriously hurts the test accuracy, especially in non-IID settings. In this work, we propose a novel algorithm called Decision Boundary based Federated Adversarial Training (DBFAT), which consists of two components (local re-weighting and global regularization) to improve both accuracy and robustness of FL systems. Extensive experiments on multiple datasets demonstrate that DBFAT consistently outperforms other baselines under both IID and non-IID settings.

Related Publications

A Simple Background Augmentation Method for Object Detection with Diffusion Model

ECCV, 2024
Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu

In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

  • HOME
  • Publications
  • Delving into the Adversarial Robustness of Federated Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.