Authors

* External authors

Venue

Date

Share

Deep Reinforcement Learning for Pin-Point Autonomous Lunar Landing: Trajectory Recalculation for Obstacle Avoidance

Giulia Ciabatti*

Dario Spiller

Shreyansh Daftry*

Roberto Capobianco

Fabio Curti*

* External authors

AII 2022

2022

Abstract

This work aims to present a method to perform autonomous precision landing—pin-point landing—on a planetary environment and perform trajectory recalculation for fault recovery where necessary. In order to achieve this, we choose to implement a Deep Reinforcement Learning—DRL—algorithm, i.e. the Soft Actor-Critic—SAC—architecture. In particular, we select the lunar environment for our experiments, which we perform in a simulated environment, exploiting a real-physics simulator modeled by means of the Bullet/PyBullet physical engine. We show that the SAC algorithm can learn an effective policy for precision landing and trajectory recalculation if fault recovery is made necessary—e.g. for obstacle avoidance.

Related Publications

Identifying Candidates for Protein-Protein Interaction: A Focus on NKp46’s Ligands

EXPLIMED, 2025
Alessia Borghini, Federico Di Valerio, Alessio Ragno*, Roberto Capobianco

Recent advances in protein-protein interaction (PPI) research have harnessed the power of artificialintelligence (AI) to enhance our understanding of protein behaviour. These approaches have becomeindispensable tools in the field of biology and medicine, enabling scientists …

Neural Reward Machines

ECAI, 2025
Elena Umili*, Francesco Argenziano*, Roberto Capobianco

Non-markovian Reinforcement Learning (RL) tasks arevery hard to solve, because agents must consider the entire history ofstate-action pairs to act rationally in the environment. Most works usesymbolic formalisms (as Linear Temporal Logic or automata) to specify the temporall…

Transparent Explainable Logic Layers

ECAI, 2025
Alessio Ragno*, Marc Plantevit, Celine Robardet, Roberto Capobianco

Explainable AI seeks to unveil the intricacies of black box models through post-hoc strategies or self-interpretable models. In this paper, we tackle the problem of building layers that are intrinsically explainable through logical rules. In particular, we address current st…

  • HOME
  • Publications
  • Deep Reinforcement Learning for Pin-Point Autonomous Lunar Landing: Trajectory Recalculation for Obstacle Avoidance

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.