Authors

Venue

Date

Share

A Pathway Towards Responsible AI Generated Content

Lingjuan Lyu

IJCAI 2023

2023

Abstract

AI Generated Content (AIGC) has received tremendous attention within the past few years, with content ranging from image, text, to audio, video, etc. Meanwhile, AIGC has become a double-edged sword and recently received much criticism regarding its responsible usage. In this article, we focus on three main concerns that may hinder the healthy development and deployment of AIGC in practice, including risks from privacy; bias, toxicity, misinformation; and intellectual property (IP). By documenting known and potential risks, as well as any possible misuse scenarios of AIGC, the aim is to sound the alarm of potential risks and misuse, help society to eliminate obstacles, and promote the more ethical and secure deployment of AIGC.

Related Publications

A Simple Background Augmentation Method for Object Detection with Diffusion Model

ECCV, 2024
Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu

In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.